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Effective Hamiltonian for liquid-vapor interfaces

K. R. Mecke and S. Dietrich
Fachbereich Physik, Bergische Universita¨t Wuppertal, D-42097 Wuppertal, Federal Republic of Germany

~Received 11 January 1999!

Starting from a density functional theory for inhomogeneous fluids we derive an effective Hamiltonian for
liquid-vapor interfaces of simple fluids which goes beyond the common phenomenological capillary-wave
description. In contrast to other approaches we take into account the long-ranged power-law decay of the
dispersion forces between the fluid particles which changes the functional form of the wave-vector-dependent
surface tension qualitatively. In particular, we find two different forms of the bending rigidity for the capillary
waves, a negative one for small wave vectors determined by the long-ranged dispersion forces and a positive
rigidity for large wave vectors due to the distortions of the intrinsic density profile in the vicinity of the locally
curved interface. The differences to the standard capillary-wave theory and the relevance of these results for
the interpretation of scattering experiments are discussed.@S1063-651X~99!10406-9#

PACS number~s!: 68.10.2m, 82.65.Dp, 61.25.Bi
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I. INTRODUCTION

The distinction between the liquid phase and the va
phase of a given substance is facilitated only by bring
them into spatial contact under appropriate thermodyna
conditions so that a liquid-vapor interface can form. In sp
of this significant conceptual and practical importance
structural properties of fluid interfaces are still unresolv
due to the dearth of rigorous theoretical results for reali
systems in spatial dimensionsd53 @1–3#. The reason for
this uncomfortable situation is the fact that at fluid interfac
two types of fluctuations occur simultaneously which requ
both the same careful statistical analysis:~i! fluctuations in
the bulk, which are present also in the absence of the in
face and cause, e.g., the temperature dependence of the
densities, and~ii ! capillary waves of the interface position
Whereas the spatial extension of the bulk fluctuations va
between the molecular diameterr 0 of the species and th
bulk correlation lengthj, the wavelengths of the capillar
waves span the range betweenj and the capillary lengthl c

5As/(DrmG) wheres is the macroscopic surface tensio
Dr5r l2rg the difference between the number densities
the liquid and vapor phase, respectively,m the mass of the
species, andG the gravitational constant.

In view of the absence of rigorous results the structure
fluid interfaces has been investigated by approxim
schemes. To this end two approaches have emerged. The
one, developed originally by van der Waals~vdW! @4#, in-
troduces a laterally flat intrinsic density profile across
interface interpolating smoothly between the densities of
bulk phases. The second approach, put forward by B
Lovett, and Stillinger~BLS! @5#, describes the actual smoo
profile as the thermal average of a fluctuating steplike in
face between the phases. The main difference between
two approaches resides in the assumption what the rele
fluctuations are. Whereas the van der Waals theory ident
the density fluctuations in the bulk phases as the relev
mechanism for the formation of a smooth profile, t
complementary BLS approach invokes the capillary wa
~CW’s! of the interface, which have no counterpart in t
bulk.
PRE 591063-651X/99/59~6!/6766~19!/$15.00
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At low temperatures, i.e., far below the critical point
the two coexisting bulk phases, the intrinsic thickness of
interface is of the size of the particles and the domin
fluctuations are capillary waves which are promoted entro
cally but opposed by gravity and by the surface tens
which penalizes the increase of the interfacial area gener
by the capillary waves. Upon raising the temperature
density fluctuations in the bulk phases become more
more important, yielding an intrinsic interfacial thickne
proportional to the increasing bulk correlation length. Thu
consistent picture of the fluid interface, in particular for cri
cal phenomena@6#, should be one which includes both a
proaches and clarifies the crossover from one to the oth

In an effort to reconcile the two approaches one may
gue that the CW theory describes fluctuations of the interf
larger than the bulk correlation lengthj whereas the van de
Waals theory takes into account fluctuations below this sc
yielding a smooth density profile@7,8#. In this picture the
VdW theory provides a smooth planar interface, the
called intrinsic interface, whose undulations are described
the CW theory. Although this view is appealing, it suffe
from the problem of specifying the length scale which se
rates both regimes. This length scale is expected to be
portional to the bulk correlation length. However, there is
algorithm which would lead to an accurate determination
this length scale. In addition to this uncomfortable quanti
tive ambiguity this unified approach is burdened by a m
fundamental problem, which is the identification of the flu
tuations which are dominant in either regime. One has
ensure that one does not count fluctuations twice, i.e.
contributions to the intrinsic density profile and as capilla
waves. Furthermore, this unified approach neglects bulk d
sity fluctuations at scales larger than the correlation leng
for which only capillary waves are taken into account. T
CW approach does not allow one to take into account b
density fluctuations which are well separated from the int
face, i.e., bubbles on scales larger than the correlation len

It seems that a more consistent way of reconciling the t
approaches consists of distinguishing the different types
fluctuations at all length scales, i.e., for both the undulatio
of the interface and the bulk density fluctuations. This me
6766 ©1999 The American Physical Society
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that the intrinsic density profile should take into account o
bulk fluctuations but no undulations of the interface positio
which are described in a second step by a statistical the
for capillary waves on all scales even for wave vectors lar
than the inverse correlation length.

To this end we start from a microscopic density function
theory for inhomogeneous simple fluids, which is a succe
ful approach for the description of nonuniform fluids@9#. We
separate the different kinds of density fluctuations—b
bubbles and interface undulations—by determining the
trinsic density profile via minimizing the functional unde
the constraint of a locally prescribed interface position; i
the location of the isodensity contour of the mean densit
given as a function of the lateral coordinates. Thus, by c
struction the profile does not take into account fluctuations
the interface position. In the second step the complete st
ture of the interface is obtained by weighting the unfreez
of these interface fluctuations by the cost in free energy
maintain a given interface configuration as determined fr
the density functional. For this separation of the fluctuatio
density functional theory is particularly suited because
forms of the density functional which are actually availab
do not contain these large interface fluctuations which lea
the roughening of fluid interfaces in the absence of grav

The usual approach to derive an effective Hamiltonian
an interface is the expansion of a free energy into power
curvatures of the interface with the leading terms determi
by special interface configurations, i.e., spherical and cy
derical ones@10,11#. This approach yields the so-called He
frich Hamiltonian @12,13#. Here, we derive—without using
such a gradient expansion—a nonlocal and non-Gaussian
pression for the effective Hamiltonian of the bending mod
of a fluctuating liquid-vapor interface. Due to the lon
ranged dispersion forces, nonanalytic contributions oc
and therefore a gradient expansion of the Hamiltonian bre
down.

The Hamiltonian derived here improves a previous v
sion @14# in three respects. First, we take into accoun
smooth variation of the intrinsic profile instead of a stepli
one. Second, we incorporate the deformation of the intrin
profile due to curvatures. Third, in analogy to the derivat
of the drumhead model starting from a phenomenolog
Landau theory@15# we introduce normal coordinates in ord
to use an appropriately adapted parametrization of the d
sity profile near the interface. These improvements put
into the position to make quantitatively reliable predictio
for scattering experiments.

In Sec. II we derive the effective Hamiltonian and discu
its main features which can be inferred already within
Gaussian approximation~Sec. III!. In particular we obtain an
expression for the momentum-dependent surface ten
s(q) which in the limit q→0 is consistent with the
Triezenberg-Zwanzig formula@16#. In Sec. IV we summa-
rize our results and discuss their implications for the int
pretation of scattering experiments.

II. EFFECTIVE INTERFACE HAMILTONIAN

In this section we derive for arbitrary intrinsic densi
profiles an effective Hamiltonian for the local interface p
sition by starting from a microscopic density function
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theory for inhomogeneous fluids~Sec. II A!. In Sec. II B we
introduce normal coordinates in order to obtain an appro
ate description of the interface configurations.

A. Density functional theory

Our analysis is based on a simple version of density fu
tional theory for one-component fluids which consist of p
ticles with a rotationally symmetric pair interaction potent
W(r ). Within this approach the interaction potentialW(r )
5ws(r )1w(r ) is split into a short-ranged repulsive pa
ws(r ) and a long-ranged attractive partw(r ) @17#. The grand
canonical density functional reads

V@r~r !#5E
V
d3r f h„r~r !…1mE

V
d3rr~r !1E

V
d3rr~r !V~r !

1
1

2EV
d3r E

V
d3r 8w~ ur2r 8u!r~r !r~r 8!, ~2.1!

whereV is the volume of the sample,r(r ) the number den-
sity of the fluid particles atr5(x,y,z), and f h(r) is the
reference free energy of a system determined by
short-ranged contribution to the interaction potent
ws(r 5ur2r 8u) @17#. Considering particles which interact vi
dispersion forces for the attractive part of the interaction
tential w(r ) we adopt the form@14#

w~r !52
w0r 0

6

~r 0
21r 2!3→2Ar2(d1t), r→`, ~2.2!

reflecting the correct large distance behaviorw(r );r 26 for
(d,t)5(3,3) andA5w0r 0

6 @18#; w0 is the depth ofW(r )
@18# andd denotes the spatial dimension. The lengthr 0 cor-
responds to the diameter of the particles@18# and thus serves
as a lower limit for the length scale of the density fluctu
tions and of the capillary waves considered below. Since
are interested in length scales larger thanr 0, we treat the free
energy functional for the inhomogeneous density in the lo
approximationf h„r5r(r )… @17,19#. Actually w(r ) should be
replaced by the direct correlation functionc(2)(r ) which,
however, reduces toW(r ) and thus tow(r ) for larger. This
replacement does not alter our main results. However,
emphasize that most of our results do not depend on
actual form ofw(r ). This form only matters for the quanti
tative results presented at the end of Sec. III. For these
culations we adopt the Carnahan-Starling expression
f h(r) @17#:

f h~r!5kBTrH ln~rl3!211
4h23h2

~12h!2 J , ~2.3!

where l is the thermal de Broglie wavelength andh
5(p/6)rr 0

3 the packing fraction.
Within this approach the equilibrium density profile min

mizes the density functional in Eq.~2.1! and yields the grand
canonical potential. The equilibrium profile depends on
temperatureT, the chemical potentialm, and a possible ex-
ternal potentialV(r ). For our purpose we consider a fluid i
a gravitational fieldG with
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6768 PRE 59K. R. MECKE AND S. DIETRICH
V~r !5mGz, ~2.4!

wherem is the mass of the fluid particles. The sample v
umeV provides a lower bound forV(r ) such thatz50 cor-
responds to the mean interface position.

We describe the local position of the liquid-vapor inte
face byz5 f (R), whereR5(x,y) with R5uRu is the lateral
reference point in thexy plane parallel to the mean interfac
at z50 ~see Fig. 1!. There are various possibilities to defin
the local position of such an interface from a given dens
distributionr(r ). We choose a crossing criterion, i.e., a co
nected isodensity contourr(„R, f (R)…)5r* wherer* is an
arbitrary, fixed density. A natural choice would be the me
densityr* 5 r̄ª(r l1rg)/2 of the bulk phases, but we do no
fix this choice. Overhangs of the interface are neglected
that we can proceed analytically by treating a single-valu
function f (R). Bubbles of one phase inside the other, i.
domains topologically separated from the interface, are
sumed to give rise to a smooth intrinsic density profi
r int„r ;$ f (R)%,r* … which depends not only onr but which is
also a functional of the prescribed positionf (R) of the in-
terface. We definer int„r ;$ f (R)%,r* … as that density profile
which minimizes the grand canonical potentialV@r(r )# un-
der the constraint

r~r5„R,z5 f ~R!…!5r* , ~2.5!

with a given fixed interface positionf (R). This minimum
depends parametrically onf (R) andr* yielding the intrinsic
profile r int„r ;$ f (R%,r* …. In this way we separate operation
ally in a well-defined manner the different types of dens
fluctuations, i.e., bulk bubbles and undulations of the int
face. Of course it remains to be proved that measura

FIG. 1. Schematic picture of an interface configuration betw
the coexisting liquid and vapor bulk phases with number dens
r l and rg , respectively. The interface does not contain overha
or bubbles. Thus the local position of the liquid-vapor interface c
be described by a single-valued functionf (R), where R
5(Rx ,Ry) denotes the lateral coordinates. The dashed curves
cate the intersections between the two-dimensional manifoldf (R)
and the planesx5Rx5const andy5Ry5const, respectively. Grav
ity G leads to a mean interface position atz50. The volume of the
sample isV5AL.
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physical quantities do not depend on our choice of the d
nition of the interface@Eq. ~2.5!#. This serves as an importan
check of consistency.

We use the abbreviation

r f~r !ªr int„r ;$ f ~R!%,r* … ~2.6!

in order to keep in mind the dependence of the density p
file on the chosen interface positionf but without indicating
the dependence onr* except in cases where it is essential.
particular we define

r0~z!ªr int„r ;$ f ~R!50%,r* … ~2.7!

as the intrinsic density profile of a flat interface which d
pends only on the distancez perpendicular to the mean in
terface position atz50. Thus the density profiler0(z) is
determined by the equation@see Eq.~2.1!#

05mh„r~r !…1m1mGz1E
V
d3r 8w~ ur2r 8u!r~r 8!,

~2.8!

with r0(z50)5r* , where we have introduced the chemic
potential

mh~r!5
] f h~r!

]r
~2.9!

of the reference system determined by the short-ranged
tributions of the interactions. We would like to mention th
it will turn out in the following that we do not need a
equivalentexplicit equation for the constrained density pr
file r f(r ) for f Þ0. It is important to note that as long a
gravity and a finite sample volume are not important t
profile r0(z,r* ) for a flat interface depends transparently
the definition of the interface, i.e., onr* .

For G50 andV5R3, Eq. ~2.8! has an infinite number o
solutions with the same free energy. These solutions di
by a translation in thez direction. The requirementr0(z
50)5r* selects uniquely one solutionr0(z,r* ) out of this
infinite set. The solution corresponding to a different cho
r̄* instead ofr* is obtained fromr0(z,r* ) according to
r0(z,r̄* )5r0(z1 z̄,r* ) wherez̄ is determined implicitly by
the relationr0(z5 z̄,r* )5 r̄* .

The effective Hamiltonian of the interface is defined
the difference

H@ f ~R!#ªV@r f~r !#2V@r0~z!#, ~2.10!

which describes the cost in free energy for deviations of
configurationf (R) from a flat one and therefore represen
the effective free energy associated with the capillary wav
It is necessary to subtract the free energy of a flat interf
before an expansion in terms of the local curvature of
bent interfacef (R) can be performed. This subtraction ca
be accomplished explicitly by carrying out a partial integr
tion in Eq. ~2.1! for the grand canonical functional. It lead
to the following expression for the effective Hamiltonian:

n
s
s
n

i-
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H@ f ~R!#52E
A
d2RE

2`

`

dzFzm1
mG

2
z2GF]r f~r !

]z
2

]r0~z!

]z G2E
A
d2RE

2`

`

dzFzmh„r f~r !…
]r f~r !

]z
2zmh„r0~z!…

]r0~z!

]z G
2

1

2E E
A
d2Rd2R8E E

2`

`

dzdz8w(2)~ uR2R8u,z2z8!F ]r f~r !

]z

]r f~r 8!

]z8
2

]r0~z!

]z

]r0~z8!

]z8
G

1w(0)r̄E
A
d2RE

2`

`

dzzS ]r f~r !

]z
2

]r0~z!

]z D . ~2.11!
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The projected areaA of the interfacef (R) onto the planez
50 is the lateral cross section of the container volumeV
5AL. The constantw(0) is the integrated strength of th
attractive part of the interaction potential,

w(0)52E
R3

d3rw~ ur u!522E
R2

d2Rw(1)~R,z5`!.0

~2.12!

@w(0)5p2w0r 0
3/4 for Eq. ~2.2!#, and the functionsw(1) and

w(2) are defined as

w(1)~ uRu,z!5E
0

z

dz8w~AR21z82! ~2.13!

and

w(2)~ uRu,z!5E
0

z

dz8E
0

z8
dz9w~AR21z92!, ~2.14!

respectively. Due tow(1)(uRu,z50)50 and the rotationa
symmetry of w(r ), the function w(1)(uRu,z)52w(1)(uRu,
2z) is antisymmetric andw(2)(uRu,z)5w(2)(uRu,2z) is
symmetric.

The validity of Eq. ~2.11! is based on two conditions
First, we have assumed that at the top (z51L/2) and at the
bottom (z52L/2) of the containersr f(r ) and r0(z) have
the same values so that the corresponding boundary term
the partial integration drop out. Since gravity prevents la
excursions off (R) which come close toz56L/2, this as-
sumption seems to be justified. Only the last contribution
Eq. ~2.11! stems from boundary terms of the partial integ
tion which appear in the course of the derivation of E
~2.11! as follows:

E
R2

d2Rw(1)~ uR2R8u,z2z8!r0~z!uz→2`
z→`

52w(0)
r l1rg

2
52w(0)r̄. ~2.15!

We note that although in Eq.~2.15! we have taken the limit
A→R2, the last term in Eq.~2.11! still contains a finite area
A of integration. Rather generally for largeA the effective
Hamiltonian scales withA. Accordingly the line contribu-
tions due to the difference betweenr f(r ) and r0(z) at the
lateral boundaries drop out in the thermodynamic limitA
→` envisaged in Eq.~2.11!.
in
e

n
-
.

The second condition entering Eq.~2.11! is that the limits
6L/2 of the z integrations can be shifted to infinity. In th
absence of gravityr0(z) andr f(r ) approach the bulk value
rg and r l for uzu→` according to vdW tails;z23 @20#
which render the integrals in Eq.~2.11! finite. Furthermore,
we consider only sample volumes which are sufficien
small so that the influence of gravity on the shape of
profiles r f(r ) and r0(z) can be neglected and the abo
convergence arguments for the integrals remain valid. Th
fore in the following we taker0(z) as the solution of Eq.
~2.8! with G50 and the boundary conditionsr0(z→`)
5rg andr0(z→2`)5r l whererg andr l are the coexist-
ing bulk densities in the absence of gravity.

B. Normal coordinates

In the next step we derive a formula for the intrinsic de
sity profile r f(r ) which enables us to express the effecti
interface Hamiltonian given by Eq.~2.11! explicitly in terms

FIG. 2. Intersection of the manifoldf (R) with a plane whose
normal lies in thexy plane. The normal coordinates (R,u) of a
point P5(xP ,yP ,zP)5(RP ,zP) are defined by the minimal dis
tanceu to the interfacef (R). We emphasize that the lateral coo
dinatesxP and yP of P are not identical to the lateral interfac
position R of that point of the manifold which has the minima
distance toP. The dashed lines are the corresponding intersecti
with parallel surfaces distancesu1 and u2 apart from f (R). The

normalized JacobianT̄ takes into account the variation of the are

elementdSu5T̄dS between parallel surfaces given byT̄ªuTu/Ag

5@](x,y,z)/](Rx ,Ry ,u)#/Ag5(11dT̄), where g511@¹ f (R)#2

is the metric of the interfacef (R). If the point P is far apart from

f (R) the minimal distanceu and R reduce toz̃5zP2 f (RP) and
RP , respectively.
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of f (R). The physical picture is that the minimization pr
cedure based on Eq.~2.5! leads to an intrinsic density profil
r f(r ) of three variablesx,y, andz which is locally similar to
the intrinsic profile of the flat configuration provided the de
sity variation is measured along the local normal of t
manifold f (R). More generally we approximate the actu
density profiler f(r ) depending onr5(R,z) by a function
r̂ f(u) which for a fixed configurationf (R) depends only on
a single variable u given by the minimal distanceuf(r )
ªu„r ;$ f (R)%… of the pointr from the interfacef (R), i.e.,

r f~r !. r̂ f„u5uf~r !…5 r̂„uf~r !;$ f ~R!%…. ~2.16!

We note that not only the variableu but also the form of the
function r̂ f(u) depends on the shape of the manifoldf (R) as
indicated by the indexf ~see Fig. 2!. For large distances from
the interface the variableuf(r ) reduces to the vertical dis
tance z̃5z2 f (R) whereas for smallz̃ the coordinateu is
normal to the interface and thus is the distance perpendic
o-

th

a

na

th

o
t
i-
di
-

l

lar

to the interfacef (R). In accordance with the problem unde
consideration the manifoldf (R) is not closed but asymptoti
cally flat.

In order to proceed one needs to know@see Eq.~2.16!# the
explicit dependence ofuf on f (R) @see Eq.~2.21!# as well as
the explicit dependence ofr̂ f(u) on f (R). With regard to the
latter dependence we expand the intrinsic density profile
powers of curvatures of the interface:

r̂ f (R)~u!5r0~u!12HrH~u!1KrK~u!1~2H !2rH2~u!1•••

5r0~u!1dr f (R)~u!. ~2.17!

With the abbreviationsf jª] f (R)/] j , j 5x,y, K denotes
the Gaussian curvature,

K5
1

2g2 @ f xx~R! f yy~R!2 f yx~R! f xy~R!#, ~2.18!

H the mean curvature,
H5
f xx~R!$11@ f y~R!#2%1 f yy~R!$11@ f x~R!#2%22 f x~R! f y~R! f xy~R!

2g3/2
5

1

2
D f ~R!1OS S ]kf

] j
k D 2D , k>1, ~2.19!
tors

n
-

andg the metric

g511@¹ f ~R!#2 ~2.20!

of the interfacef (R).
In principle, the distortiondr f (R)(u) of the density profile

due to the bending of the interfacef (R) can be inferred from
considering spherical and cylindrical interfacesf (R) ~see,
e.g., Ref.@10#!. However, whereas it is known that the pr
file r0(u) is positive for all values ofu and interpolates
smoothly between the bulk densitiesr l for u→2` and rg
for u→`, there are no explicit results for the profilesrH(u),
rK(u), and rH2(u). We expect that the correction term
rH(u) due to the mean curvatureH of the interface atR is
also positive. This means that there is an increase of
density r̂ f(u) compared withr0(u) if the interface is bent
locally towards the vapor phase, i.e., forH.0, and a de-
crease forH,0. The reasoning for this sign is that for
given distanceu below ~above! the interfacef (R) the corre-
sponding point appears to be effectively deeper~less deep! in
the liquid ~vapor! phase due toH(R).0 as compared with
r0 for a flat interface evaluated at the sameu. In the follow-
ing we make no further assumptions about the functio
form of the correction termsrl(u), l5H,K,H2. But it is
important to note that in contrast tor0(z,r* ) the distortions
rl(u,r* ) depend less transparently on the choice of
crossing criterionr* .

According to the concept introduced at the beginning
this subsection the profilesr0(u) andrl(u) are evaluated a
the minimal distanceu as determined by the normal coord
nates (Rx ,Ry ,u). They are related to the Cartesian coor
e

l

e

f

-

nates (x,y,z) and the representationf (R) of the interface
according to~see, e.g., Ref.@15# and Fig. 2!

S x

y

z
D 5S Rx

Ry

f ~R!
D 1un~R!. ~2.21!

The normal is given by the vectorn(R)5„2“ f (R),1…/Ag
and the JacobianuTu of this transformation is

uTu5
]~x,y,z!

]~Rx ,Ry ,u!
5:AgT̄5:Ag~11dT̄!, ~2.22!

with @based on Eq.~2.21!#

T̄5~11u]Rx
nx!~11u]Ry

ny!5u122uH1u2Ku.
~2.23!

Whereas this transformation in Eq.~2.21! is correct for small
values ofu, it does not hold for large values ofu due to
singularities in the transformation given by Eq.~2.21!. These
singularities are caused by the intersection of normal vec
un(R1) and un(R2) at different interface positionsR1 and
R2. Thus for a given pointr5(x,y,z) there can be more tha
one corresponding tupel (Rx ,Ry ,u). The approximate char
acter of this transformation shows up,inter alia, at large
distancesu from the interface for which the variableu re-
duces toz̃5z2 f (R) and the normal vectorn(R) becomes
vertical. In this limit the foot point„R, f (R)… of the normal is
given by the point nearest to (x,y) where the interfacef (R)
has a maximum, i.e., wheref (R) is horizontal with¹ f (R)
50. Therefore one hasg„R(u→`)…51. Thus the Jacobian
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uTu of this latter transformation is equal to 1 in contrast to t
large-u behavior given by Eqs.~2.22! and ~2.23!. However,
since the integrands of the Hamiltonian in Eq.~2.11! are
proportional to the first derivatives of the profilesr f(r ) and
r0(z), they are peaked aroundz5 f (R) or z50, respec-
tively. Thus the main contributions to these integrals st
from small values ofu. Therefore the aforementioned de
ciency of the transformation for large values ofu is effec-
tively suppressed. A more detailed account of this mec
nism is given below.

C. Explicit form of the effective interface Hamiltonian

According to Secs. II A and II B the dependence of t
HamiltonianH in Eq. ~2.11! on the interface positionf (R)
stems from two sources. First, one obtains terms which
pend onf (R)2 f (R8) due to the nonlocality of the potentia
w(2)(uR2R8u,z2z8) as a function ofz andz8. Second, there
appear terms involving¹ f (R) and higher derivatives o
f (R) due to the transformation in Eq.~2.21! and, in particu-
lar, due to the metricg and the JacobianuTu. We keep the full
dependence onf (R)2 f (R8) in the first type of terms but in
accordance with Eqs.~2.16! and ~2.17! we expandr f(r ),
which enters into Eq.~2.11!, into powers of first derivatives
and of curvatures, i.e., higher derivatives off (R), keeping
terms (]kf /] j k) l with l ,k<2.

Accordingly in the thermodynamic limit for largeA the
HamiltonianH consists of three contributions, one due
gravity ~G! as well as local~l! and nonlocal (nl) terms:

H@ f ~R!#5HG@ f ~R!#1Hl@ f ~R!#1Hnl@ f ~R!#.
~2.24!

In the field of gravity the displacement of the interface po
tion relative to the reference planez50 leads to the follow-
ing energy contributions:

HG@ f ~R!#5
1

2
mGDrE

A
d2R$@ f ~R!#21d (T)@ f ~R!#

12 f ~R!d (r)@ f ~R!#%, ~2.25!

with the moment

d (T)@ f ~R!#5
1

DrE2`

`

dudT̄u2
]r0~u!

]u
~2.26!

due to the change of the areauTu of the parallel surface and
thus of the mass distribution. The second gravity contri
tion @see Eq.~2.17!#

d (r)@ f ~R!#5
1

DrE2`

`

dudr f~u!5:2HdH1KdK1~2H !2dH2

1••• ~2.27!

with

dl5
1

DrE2`

`

durl~u!, l5H,H2,K, ~2.28!

stems from a shift of mass across the interface due to
distortiondr f(u) of the bent interface profile.
a-

e-

-

-

e

The second term in Eq.~2.24! contains contributions pro
portional to the mean curvatureH, to the Gaussian curvatur
K, and to the square of the mean curvature of the interf
and thus collects the local bending energies:

Hl@ f ~R!#5E
A
d2R$k (T)@ f ~R!#1k (r)@ f ~R!#%,

~2.29!

with

k (T)@ f ~R!#52E
2`

`

du@mh„r0~u!…

1m2w(0)r̄1mGu#udT̄
]r0~u!

]u

5E E
2`

`

dudu8E
R2

d2Rw(1)~R,u2u8!

3udT̄
]r0~u!

]u

]r0~u8!

]u8
~2.30!

and

k (r)@ f ~R!#52E
2`

`

duS ]2f h~r0!

]r0
2 udr f~u!

]dr f~u!

]u

1
1

2

]3f h~r0!

]r0
3 u@dr f~u!#2

]r0~u!

]u D
5

1

2E2`

`

du
]2f h~r0!

]r0
2 @dr f~u!#2

5
1

2
k~2H !21•••, ~2.31!

with

k5E
2`

`

du
]2f h~r!

]r2 U
r5r0(u)

@rH~u!#2.0. ~2.32!

The second equation in Eq.~2.30! follows from the first one
by using Eq.~2.8!. The relations in Eq.~2.31! can be ob-
tained by partial integration. The occurrence of these lo
bending rigidities reflects the smoothness of the intrin
density profile. As one can see from Eqs.~2.30!–~2.32! they
vanish within the sharp-kink approximationr0

(sk)(u)5r l

2DrQ(u) with the Heaviside functionQ(u) used in Ref.
@14# which leads to]r0

(sk)(u)/]u52Drd(u). As one can
see from the second equation in Eq.~2.31! the bending rigid-
ity k is always positive, ensuring the stability of the interfa
against perturbations with large wave vectors. This posit
bending rigidity is linked to the presence of the distorti
rH(u) of the flat intrinsic density profile induced by the cu
vature of the interface@see Eq.~2.17!#. This demonstrates the
importance of keeping track of the change of the local d
sity near the interface due to its curvature in order to obt
a reliable expression of the cost in free energy of bent in
faces.
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Equations~2.26! and ~2.30! contain moments of the de
rivative of the flat intrinsic profile multiplied by the deviatio
dT̄5T̄21 of the Jacobian divided byAg from its value for a
flat interface @see Eq.~2.22!#. For small values ofu, for
which Eq.~2.23! is valid, dT̄(u)522uH1u2K consists of
a term linear inu and of a term quadratic inu. On the other
hand, as discussed in the paragraph following Eq.~2.23!, for
largeu one hasuTu51 andAg„R(u→`)…51 so thatdT̄(u
→`)50, a value not captured by Eq.~2.23!. This leveling
off of dT̄(u) for large u ensures the convergence of th
integrals in Eqs.~2.26! and ~2.30! even in the presence o
dispersion forces which cause an algebraic decay
]r0(u)/]u;uuu24 for uuu→` @20#. Regrettably there is no
explicit formula available which covers the full dependen
of dT̄(u) for all values ofu. However, since]r0(u)/]u is
peaked aroundu50, the main contributions tod (T)@ f (R)#
and k (T)@ f (R)# stem from small values ofu for which the
explicit form of dT̄(u) is given by Eq.~2.23!. The width of
this relevant region of values foru is set by the bulk corre-
lation lengthj @20# so that we obtain the following explici
albeit approximate expressions ford (T) andk (T):

d (T)@ f ~R!#.22Hd31Kd4 , ~2.33!

with

dn5
1

DrE2j

j

duun
]r0~u!

]u
, Dr5r l2rg , ~2.34!

and

k (T)@ f ~R!#.22Hk̄21Kk̄31•••, ~2.35!

with

k̄n5E E
2j

j

dudu8E
R2

d2Rw(1)~R,u2u8!

3un
]r0~u!

]u

]r0~u8!

]u8
. ~2.36!

For asymptotically flat interfaces as considered h
*Ad2RK50 so that the termsKd4 andKk̄3 have not to be
considered in the following.

The third term in the Hamiltonian in Eq.~2.24! takes into
account the nonlocal contributions mentioned above:

Hnl@ f ~R!#5E E
A
d2R d2R8Fh~dR,d f !

1
1

2
@¹ f ~R!#2s~dR,d f !G

1E E
A
d2R d2R8@2Hk (H)~dR,d f !

1~2H !2k (H2)~dR,d f !1Kk (K)~dR,d f !#

2
1

2EEA
d2R d2R8D f ~R!D f ~R8!k (HH)~dR,d f !

1•••. ~2.37!
of

e

e

Here, we have introduced the abbreviationsd fªd f (R,R8)
5 f (R)2 f (R8) and dRªR2R8. All derivatives, if not in-
dicated otherwise, are evaluated atR. With the notations
duªu2u8 andl5H,H2,K the integrands in Eq.~2.37! are
given by

h~dR,d f !52
1

2E E
2`

`

dudu8
]r0~u!

]u

]r0~u8!

]u8

3@w(2)~dR,du1d f !2w(2)~dR,du!

2w(1)~dR,du!d f #, ~2.38!

s~dR,d f !52E E
2`

`

dudu8@w(1)~dR,du1d f !

2w(1)~dR,du!#u
]r0~u!

]u

]r0~u8!

]u8
,

~2.39!

k (l)~dR,d f !5E E
2`

`

dudu8@w(1)~dR,du1d f !

2w(1)~dR,du!#rl~u!
]r0~u8!

]u8
, ~2.40!

and

k (HH)~dR,d f !5E E
2`

`

dudu8w(2)~dR,du1d f !

3
]rH~u!

]u

]rH~u8!

]u8

52E E
2`

`

dudu8w@A~dR!21~du1d f !2#

3rH~u!rH~u8!. ~2.41!

These terms take into account the nonlocal effects cause
the interaction potentialw(r ). We emphasize that Eqs
~2.37!–~2.41! capture thefull dependence of the interfac
free energyH on the differenced f 5 f (R)2 f (R8) for small
values ofu so that the resulting Hamiltonian is non-Gaussi
and nonlocal.

The derivation of Eq.~2.24! uses explicitly the equilib-
rium condition in Eq.~2.8! for the flat intrinsic profile which
leads to the cancellation of all terms proportional tof (R) in
the Hamiltonian in Eq.~2.24!. This is necessary for obtainin
an equilibrium mean interface position atz50, i.e., ^ f (R)&
50. Here, ^•& denotes the thermal average wi
exp(2bH) as the statistical weight.

It is pleasing to see that the general form of the nonlo
contribution in Eq.~2.37! is also given by an expansion i
terms of local derivatives of the interface positionf (R). But
in contrast to the local contribution in Eq.~2.29!, the expan-
sion coefficients depend nonlocally on the interface posit
f (R) due to the nonzero range of the pair potentialw(r ) in
the density functional in Eq.~2.1!.
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In the special case of the sharp-kink approximat
r0

(sk)(u)5rgQ(u)1r lQ(2u) for the intrinsic density pro-
file the Hamiltonian in Eq.~2.24! reduces to

H (sk)@ f ~R!#5
1

2
mGDrE

A
d2R@ f ~R!#2

2
Dr2

2 E E
A
d2R d2R8@w(2)~dR,d f !

2w(2)~dR,0!2w(1)~dR,0!d f #, ~2.42!

which coincides with the expression derived in Ref.@14#.
Inter alia, as mentioned above, within this sharp-kink a
proximation the contributions proportional to curvatures
the interface vanish. Thus the sharp-kink approximation
not applicable for the description of bendings of the interfa
with short wavelengths.

Since the equilibrium profiler0(u) is independent of the
choice of the crossing criterionr* , the functionsh(dR,d f )
ands(dR,d f ) and therefore the surface tensions0 @see Eq.
~3.12!# are independent of it, too. But the dependence of
distortiondr(u), i.e., of rl(u,r* ), on the crossing criterion
o

-
f
is
e

e

r* induces such a dependence of the bending rigidi
k, k (l)(dR,d f ), andk (HH)(dR,d f ). So different choices of
r* result in different functions and the rigidities must b
regarded as being specific to the chosen isodensity conto
interface location. However, as mentioned already in R
@21# this dependence is not a defect of the present formali
Instead it remains to be proved within our approach that
measurable quantities such as correlation functions this
pendence onr* drops out. Moreover, as described in Re
@22# the dependence onr* can be exploited in order to con
struct the lateral structure factor for normal positionsz1 ,z2
Þ0.

III. GAUSSIAN THEORY

A. General expressions

One gains important insight into the structure of t
Hamiltonian in Eq. ~2.24! by truncating all contributions
nonlinear in f (R):H@ f #5H (G)@ f #1O( f 3). In view of cal-
culating later on thermal averages with the statistical wei
exp(2bH@ f #) we call this a Gaussian approximation with
which we obtain
H (G)@ f ~R!#5
1

2
mGDrE

A
d2R$ f ~R!222dH@¹ f ~R!#2%1

1

2
kE

A
d2R@D f ~R!#2

1E E
A
d2R d2R8Fh0~dR!~d f !21k0

(H)~dR!D f ~R!d f 2
1

2
k0

(HH)~dR!D f ~R!D f ~R8!G , ~3.1!
lly

c-

nto

e
ond-

-

the
with k.0 given by Eq.~2.32! and with the positive definite
functions

h0~dR!52
1

4E E
2`

`

dudu8w@A~dR!21~du!2#

3
]r0~u!

]u

]r0~u8!

]u8
.0, ~3.2!

k0
(H)~dR!5E E

2`

`

dudu8w@A~dR!21~du!2#

3rH~u!
]r0~u8!

]u8
.0, ~3.3!

and

k0
(HH)~dR!52E E

2`

`

dudu8w@A~dR!21~du!2#

3rH~u!rH~u8! .0. ~3.4!

The local energy term22Hk̄2 @Eq. ~2.35!# and the gravity
terms22Hd3 @Eq. ~2.33!# and 2HdH @Eq. ~2.27!# propor-
tional to the mean curvatureH(R);D f (R) can be inte-
grated, yielding boundary terms which vanish in the therm
 -

dynamic limitA→`, because the interface is asymptotica
flat. Therefore, they are omitted from Eq.~3.1!. @The contri-
butions;K are zero as noted after Eq.~2.36!#. As already
indicated at the end of Sec. II the energy termh0(dR) does
not depend on the definition of the interface position. A
cording to the paragraph following Eq.~2.9! the various pos-
sible definitions of the interface position can be mapped o
each other by suitable shifts of the argumentu of the intrinsic
interface profiler0(u). Since the integrand in Eq.~3.2! de-
pends only ondu5u2u8, such shifts do not alter the valu
of h0(dR) because they can be compensated by corresp
ing shifts of the integration variablesu and u8. In contrast,
the coefficientsk0

(H)(dR,r* ) andk0
(HH)(dR,r* ) depend on

r* throughrH(u,r* ) describing the distortion of the intrin
sic profile.

It is transparent to studyH (G) in Fourier space in which
the bending modes decouple. To this end we introduce
Fourier transformed functions

f̃ ~q!5E
R2

d2Re2 iq•Rf ~R!, f ~R!5E
R2

d2q

~2p!2eiq•R f̃ ~q!,

~3.5!

w̃~q,u!5E
R2

d2Re2 iq•Rw~AR21u2!

52pE
0

`

dRRJ0~qR!w~AR21u2!, ~3.6!
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with the Bessel functionJ0(x),

h̃0~q!5E
R2

d2Re2 iq•dRh0~dR!

52
1

4E E
2`

`

dudu8w̃~q,du!
]r0~u!

]u

]r0~u8!

]u8
,

~3.7!

k̃0
(H)~q!5E

R2
d2Re2 iq•dRk0

(H)~dR!

5E E
2`

`

dudu8w̃~q,du!rH~u!
]r0~u8!

]u8
,

~3.8!

and

k̃0
(HH)~q!5E

R2
d2Re2 iq•dRk0

(HH)~dR!

52E E
2`

`

dudu8w̃~q,du!rH~u!rH~u8!.

~3.9!

In terms of these functions the HamiltonianH (G) reads

H (G)@ f̃ ~q!#5E
R2

d2q

~2p!2

1

2
u f̃ ~q!u2@mGDr~122dHq2!

1s0~q!q2#, ~3.10!

with the momentum-dependent surface tension

s0~q!54
h̃0~0!2h̃0~q!

q2
12@ k̃0

(H)~q!2k̃0
(H)~0!#

1@k2k̃0
(HH)~q!#q21O~q4!. ~3.11!

The index 0 indicates that these expressions refer to
Gaussian approximation. Equations~3.10! and ~3.11! de-
scribe the cost in free energy for bending an interface w
wave vectorq in terms of the microscopic interaction pote
tial w(r ) @Eq. ~2.2!# @or the direct correlation function
c(2)(r )#, the intrinsic density profiler0(u) @Eq. ~2.8!# of a
flat interface, and its distortionrH(u) @Eq. ~2.17!# due to the
mean curvatureH of f (R).

Since we have truncated higher derivatives off (R), the
expression fors0(q) in Eq. ~3.11! is valid up to, but not
including, terms of the order ofq4. This implies that the
effective interface HamiltonianH (G) in Eq. ~3.10! captures,
within the Gaussian approximation, all contributions up
but not including, terms proportional toq6.

B. General properties

If the interparticle potential decays sufficiently rapidl
i.e., w(r→`)52Ar2(d1t) with t.1, which covers the
physically relevant case of fluids in spatial dimensiond53
e

h

,

governed by dispersion forces witht53, the momentum-
dependent surface tensions0(q) attains a finite positive
value forq→0:

s0ªs0~q50!5
1

2E E
2`

`

dudu8w̃9~0,u2u8!

3
]r0~u!

]u

]r0~u8!

]u8
.0, ~3.12!

where

w̃9~0,u!5
]2w̃~q,u!

]q2 U
q50

52E
0

`

dd21RR2w~AR21u2!.0

52pE
0

`

dRR3w~AR21u2!, d53. ~3.13!

Due to the rotational invariance ofw(r ), one hasw̃8(0,u)
5]w̃(q,u)/]quq5050.

Sincew(r ) is smooth forr→0 and vanishes forr→`,
one has lim

q→`
w̃(q,du)50. Together with Eqs.~3.7!–

~3.11! this implies

s0~q→`!5kq21O~q4!, k.0. ~3.14!

Since the bending rigidityk.0 is always positive@see Eq.
~2.32!#, Eq. ~3.14! states that the interface is stable with r
spect to perturbations with short wavelengths. The range
validity of Eq. ~3.11! reaches up to the microscopic cutoff
qmax5r0

21 set by physical considerations according to whi
the concept of capillary wavelike fluctuations is valid at mo
up to wavelengths comparable to the diameter of the fl
particles. Equation~3.14! has the pleasant feature to rend
this momentum cutoff superfluous. If thermal averages
evaluated with the statistical weight exp$2bH (G)@ f̃ (q)#% the
increase ofs0(q) for large q implies that the unphysica
fluctuations withq.qmax are penalized with such a sma
statistical weight that the momentum cutoffqmax can be re-
placed by infinity without significant quantitative errors. As
consequence our approach does not require a quantitat
precise value forqmax. We emphasize that this valuable a
pect of the present theory depends on its rather detailed
scription. The positivity of the bending rigidityk is linked to
the distortion of the intrinsic density profile due to the cu
vature of the interface configuration, i.e.,rH(u)Þ0 @see Eqs.
~2.16! and ~2.31!#. Therefore previous theoretical ap
proaches, which are based only on the intrinsic profiler0(u)
for a flat interface, miss the important increase ofs0(q) for
large q @14#. According to Eq.~3.14!, s0(q) may contain
terms which increase forq→` even stronger thankq2.
These terms correspond to higher-order contributions to
expansion ofr f(u) into curvatures of the interface configu
ration f (R) @Eq. ~2.16!# and to additional terms which aris
from the transformation to normal coordinates but are
captured by Eq.~2.21!. Although knowledge of these term
O(q4) in s0(q) would be highly welcome in order to im
prove the quantitative reliability of the effective interfac
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Hamiltonian for large values ofq, the suppression of fluctua
tions with small wavelengths is already accomplished by
term kq2 in s0(q).

C. Long-wavelength limit

Whereas the approach ofs0(q) towards a finite positive
values0 at q50 and the increase ofs0(q);kq2 for largeq
are, to a large extent, independent of the structure and
form of the interparticle potential, the way in whichs0(q)
interpolates between these limiting behaviors depends se
tively on the analytic properties ofw(r ).

If w(r→`) decays exponentially or faster,s0(q→0) is
an analytic function ofq and thus it can be expanded arou
q50 into even powers ofq:

s0~q→0!5s01k0q21O~q4!, short-ranged forces,
~3.15!

with

k05k1E E
2`

`

dudu8S 1

24
w̃( iv)~0,u2u8!

]r0~u!

]u

]r0~u8!

]u8

1w̃9~0,u2u8!rH~u!
]r0~u8!

]u8

1w̃~0,u2u8!rH~u!rH~u8!D , short-ranged forces,

~3.16!

where ind53

w̃( iv)~0,u!5
3p

4 E
0

`

dRR5w~AR21u2!,0. ~3.17!

We emphasize that the amplitudek0 of the q2 term of the
small-q behavior@Eq. ~3.15!# differs from the amplitudek of
the q2 term of the large-q behavior@Eq. ~3.14!# of s0(q).
This indicates that even for short-ranged forces there
nontrivial crossover between the asymptotic behaviorsq
→0 andq→`. Whereask is positive@Eq. ~2.31!# all three
terms forming the integrand of the double integral in E
~3.16! are negative so thatk0 can become negative. Thus th
sign of k0 depends on the details of the interaction poten
w(r ) and of the resulting profilesr0(u) and rH(u). This
implies that, in marked contrast to the usual ansatz in p
nomenological capillary wave theory@23#, k0 in Eq. ~3.16!
can benegative. Also in this case theq dependences o
h̃0(q), k̃0

(H)(q), and k̃0
(HH)(q) in Eq. ~3.11! yield a smooth

crossover towards the increase;kq2,k.0, for large q.
Thus for negative values ofk0 ,s0(q) exhibits alocal maxi-
mumat q50 followed by aglobal minimumat qmin.0 and
an unlimited increase forq.qmin . Such a nonmonotonic
form of s0(q) is beyond the predictions of phenomenolog
cal capillary wave theories.

Whereas for short-ranged forcess0(q) can be either a
monotonically increasing function with its minimum atq
50 or a nonmonotonic function with its minimum atqmin
.0, for algebraically decaying dispersion forces withw(r
e

he

si-

a

.

l

e-

→`)52Ar2(d1t), t.1, the latter nonmonotonic behavior
the rule. Moreover, algebraically decaying interaction pot
tials induce anonanalyticbehavior ofs0(q) for q→0. This
follows from the fact that the moments*Rdddr r nw(r ) do not
exist for n>t so thatw̃( iv)(0,du) @Eq. ~3.17!# and thusk0
@Eq. ~3.16!# diverge for t<3. Therefore the expansion o
s0(q→0) into powers ofq2 @Eq. ~3.15!# breaks down for the
physically interesting case of three-dimensional fluids g
erned by dispersion forces, i.e., (d,t)5(3,3) for which
w(r→`);r 26. Based both on the analytic analysis of th
asymptotic behavior of the functionw̃(q,du) and on numeri-
cal evaluations of Eq.~3.11! for specific interaction poten
tials ~see below!, we find thats0(q→0) is the sum of ana-
lytic ~a! and nonanalytic (na) terms:

s0~q→0!5s0
(a)~q→0!1s0

(na)~q→0!, ~3.18!

with

s0
(a)~q→0!5(

i>0
k0

( i )q2i5s01k0q21k0
(2)q41•••,

~3.19!

where we have used the abbreviationsk0
(0)[s0 @Eq. ~3.12!#

and k0
(1)[k0 @note that for t<3k0 is not given by Eq.

~3.16!; see Eq.~3.25!#, and

s0
(na)~q→0!5(

i>0
l0

( i )qt2112i5l0
(0)qt211l0

(1)qt111•••,

tÞ2n11, ~3.20!

for nPN0. If t happens to be an odd number 2n11, reso-
nances between the corresponding analytic and nonana
terms generate nonanalytic contributions;q2m ln q with
2m52n,2n12, . . . ,which replace the power law singular
ties, yielding

s0
(na)~q→0!5(

i>0
l̄0

( i )qt2112i ln q5l̄0
(0)qt21 ln q1•••,

t52n11. ~3.21!

The types of singularities described by Eqs.~3.20! and~3.21!
are the same as those obtained within the sharp-kink appr
mation for the intrinsic interface profile@14~a!#. The first
case@Eq. ~3.20!# is important for retarded dispersion force
decaying algebraically withw(r→`)52Ar27, i.e., t54.
For nonretarded (t53) interactions, one finds that the lea
ing term l̄0

(0) is positive for an attractive potential, i.e.,A
.0. Therefore, the surface tensions0(q) exhibits always a
local maximum atq50. This will be discussed in the fol
lowing.

For the case of three-dimensional fluids governed by d
persion forces, i.e., (d,t)5(3,3) these considerations yield

s0~q→0!5s01k0q21l̄0
(0)q2 ln q1O~q4!, t53.

~3.22!
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s0 is given by Eq.~3.12!. The amplitudesk0 and l̄0
(0) are

determined byh̃0(q), k̃0
(H)(q), and k̃0

(HH)(q) @see Eqs.
~3.7!–~3.9! and ~3.11!#. With

h̃0~q→0!5h̃0~0!1
1

2
h̃09~0!q21g4q41ḡ4q4 ln q

1O~q6!, t53, ~3.23!

one has (t53)

l̄0
(0)524ḡ45 lim

q→0

1

q4 ln q
E E

2`

`

dudu8

3S w̃~q,du!2w̃~0,du!2w̃9~0,u2u8!
q2

2 D
3

]r0~u!

]u

]r0~u8!

]u8
~3.24!

and

k05k24g41E E
2`

`

dudu8

3S w̃9~0,u2u8!rH~u!
]r0~u8!

]u8

1w̃~0,u2u8!rH~u!rH~u8!D . ~3.25!

k is given by Eq.~2.32!. Thus for dispersion forces Eqs
~3.22! and~3.25! replace Eqs.~3.15! and~3.16!, respectively.

D. Product approximation

An accurate evaluation of Eqs.~3.11! and ~3.22!–~3.25!
can be carried out only numerically~see below!. However, it
is very instructive to provide in addition explicit, albeit ap
proximate, expressions for these quantities. To this end
first introduce dimensionless functionsr̄0(x) and r̄H(x) de-
scribing the two relevant density profiles:

r0~u!5 r̄2
1

2
Drr̄0S u

j D , r̄0~x56`!561 ~3.26!

and

rH~u!5CHDrjr̄HS u

j D , r̄H~x56`!50. ~3.27!

Dimensional analysis shows that in generalr̄0 depends
on u/j, r 0 /j, and w0 /(kBT) where j25(1/2d)
3@*ddr r 2G(r )#/*ddrG(r ) is the bulk correlation length de
fined via the second moment of the two-poi
correlation function G(r 5ur12r2u)5^r(r1)r(r2)&
2^r(r1)&^r(r2)&. r 0 andw0 set the length and energy sca
of the interparticle potential, for example given by Eq.~2.2!.
For the density functional approach given in Eq.~2.1! one
finds j252r2KT*d3r r 2w(r ) where
e

KT52
1

V S ]V

]p D
T,N

5r22S ]2f h~r!

]r2 2w(0)D 21

~3.28!

denotes the isothermal compressibility and]2f h(r)/]r2 is
evaluated at the equilibrium bulk densities at coexisten
For T→Tc the correlation length j5j0

2t2n, t5(Tc

2T)/Tc , diverges fort→0 wheren is a universal bulk ex-
ponent, whose value equals 0.5 for the present mean
theory @Eq. ~2.1!#. j0

2 is a nonuniversal amplitude withj0
2

5r 0/2 for the model defined by Eqs.~2.2! and ~2.3!. For
temperatures well belowTc the correlation lengths in the
liquid j ( l ) and vaporj (g) phases differ from each other an
from the limiting common valuej5j0

2t2n. Although it is
straightforward to determinej ( l ) and j (g) numerically, we
have opted for the advantage of using the following analy
expression:

j~T!5a~T!S 12
T

Tc
D 2n

, a~T!5j0
2

T

Tc
, n5

1

2
,

~3.29!

where the amplitudea(T) exhibits a linear temperature de
pendence. The expression in Eq.~3.29! has the virtue of
fulfilling the relationsj ( l ).j(T).j (g) and will be used in
the following whenever an explicit expression for the cor
lation length is needed. Moreover, it has the appealing pr
erty that at the triple pointTtr.(2/3)Tc the correlation length
j(Ttr)'0.58r 0 is of the order of the microscopic cutof
lengthr 0 which is assumed to be larger than but compara
to the diameter of the particles. For temperatures belowTtr
—where no fluid interface exists—the model defined by E
~2.1! ceases to be applicable because it does not capture
freezing transition, which would require a more sophistica
version of the density functional.

In the limit T→Tc the dependences ofr̄0(x) on r 0 /j and
w0 /(kBT) drop out andr̄0(x) reduces to a universal functio
r̄0(x) whose mean field approximation is given by

r̄0~x!5tanh
x

2
. ~3.30!

For a qualitative estimate this expression can be useful e
away fromTc ; a quantitatively reliable expression requir
to solving Eq. ~2.8! numerically. Analogous information
aboutrH(u) is presently not available. In the spirit of th
above reasoning we adopt a similar scaling form forrH @Eq.
~3.27!#. The correct naive dimension is taken into account
the amplitudesDr andj, assuming that they set the releva
scales. The dimensionless amplitudeCH.0 is fixed by the
requirement*2`

` dxr̄H(x)51. Therefore, its value depend
on the definition of the interface@Eq. ~2.5!#. Regrettably,
within the density functional used here, there are no expl
results available for the profiler̄H(x) or for the amplitude
CH . We assume thatCH is temperature independent and th
its value is smaller than 1 because the distortion due to
curvature is expected to be not larger than the density dif
enceDr itself. For example, within the double-parabola a
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proximation of Landau theory one findsCH50.25. In order
to proceed, for actual calculations we adopt the followi
form of the profile:

r̄H~x!5
1

4p

x sinhx/2

cosh2 x/2
, ~3.31!

which is positive in accordance with the physical argume
given in the paragraph following Eq.~2.20!.

The functionsh̃0(q), k̃0
(H)(q), and k̃0

(HH)(q) can be ex-
pressed in terms of these scaling functions. Starting from
~3.7! for the double integral one can apply the following—
we call it—product approximation which is valid in the ca
j@r 0:

h̃0~q!52
1

16
~Dr!2

r 0

j E E
2`

`

dxdx8w̃~q,xr0!

3
]r̄0~x81x ~r 0/j!!

]x8

]r̄0~x8!

]x8

52
1

16
~Dr!2

r 0

j E E
2`

`

dxdx8w̃~q,xr0!

3S ]r̄0~x8!

]x8
D 2

1O„~r 0 /j!3
…

52
1

16
~Dr!2

1

j S E2`

`

duw̃~q,u! D E
2`

`

dxS ]r̄0~x!

]x
D 2

1O„~r 0 /j!3
…. ~3.32!

For the second equation we used the property thatw̃(q,u) is
an even function ofu peaked atu50. With the three-
dimensional Fourier transformw̃(Q)5w̃(uQu) of the inter-
particle potentialw(r ),

w̃~Q!5E
R3

d3re2 iQ•rw~r !, ~3.33!

one has, forQ5(q,0) @see Eq.~3.6!#,

E
2`

`

duw̃~q,u!5w̃~ uQu5q!5
4p

q E
0

`

dr rw~r ! sinqr.

~3.34!

This leads to the approximation

h̃0~q!.2
~Dr!2

16j
I 0w̃~q!1O„~r 0 /j!3

…, ~3.35!

with the dimensionless integral

I 05E
2`

`

dxS ]r̄0~x!

]x
D 2

.0. ~3.36!

The comparison of the product approximation with the f
numerical evaluation ofh̃0(q) @Eq. ~3.7!# reveals that the
difference between them is less than 10% for the full te
perature range and typically less than 1% forj.10r 0. Thus,
s

q.

l

-

the product approximation in Eq.~3.35! yields a good overall
picture of the behavior ofs0(q). A more detailed compari-
son will be presented in Sec. III E. Along the same line
arguments one finds

k̃0
(H)~q!.2

1

2
CH~Dr!2jI Hw̃~q! ~3.37!

and

k̃0
(HH)~q!.2CH

2 ~Dr!2j3I HHw̃~q!, ~3.38!

with the dimensionless integrals

I H5E
2`

`

dxr̄H~x!
]r̄0~x!

]x
.0 ~3.39!

and

I HH5E
2`

`

dx@ r̄H~x!#2.0. ~3.40!

For the functional forms ofr̄0(x) and r̄H(x) as given by
Eqs. ~3.30! and ~3.31!, respectively, one obtainsI H
51/12, I 052/3, andI HH51/3611/(3p2).

Thus, within this product approximation, the momentu
dependent surface tension@Eq. ~3.11!# is given as

s0~q!.~s02k0
(H)q2!

w̃~q!2w̃~0!

1

2
w̃9~0!q2

1S k2k0
(HH) w̃~q!

w̃~0!
D q21O~q4! ~3.41!

with w̃9(0).0, w̃(0),0 @Eq. ~3.33!#,

s0522h̃09~0!.
1

8
w̃9~0!

~Dr!2

j
I 0.0, ~3.42!

k0
(H)52k̃0

(H)9~0!.
1

2
w̃9~0!~Dr!2CHjI H.0, ~3.43!

k0
(HH)5k̃0

(HH)~0!.2w̃~0!~Dr!2CH
2 j3I HH.0,

~3.44!

and, without invoking the product approximation@see Eq.
~3.32!#,

k5~Dr!2CH
2 j3E

2`

`

dx@ r̄H~x!#2
]2f h~r!

]r2 U
r5r0(u5xj)

.0.

~3.45!

Within this product approximation the momentum depe
dence of s0(q) is determined by thethree-dimensional
Fourier transformw̃(Q) of the interparticle potentialw(r )
evaluated for the absolute value of the lateral momentumq.
For short-ranged forcesw̃(q) is analytic aroundq50 so that

w̃~q→0!5(
i 50

`
1

~2i !!
w̃(2i )~0!q2i , short-ranged forces,

~3.46!
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with

w̃(2i )~0!5~21! i
4p

2i 11E0

`

dr r 2i 12w~r ! ~3.47!

in d53. If w(r ) decays algebraically asw(r→`)5

2Ar2(d1t), the expansion ofw̃(q→0) contains analytic
terms ;q2i , i PN0, whose amplitudes are, however, give
by @1/(2i )! #w̃(2i )(0), only for 2i ,t, and nonanalytic terms
The leading nonanalytic term is given by

@w̃~q→0!#na5
2Apd/21122tqt

sin@p~t/211!#G„~t1d!/2…G~t/211!
.

~3.48!

The subdominant nonanalytic terms depend on the subd
nant decay ofw(r ). For t52n resonances with the analyti
terms lead to singularities;q2n ln q instead of algebraic
ones. Together with Eq.~3.41! these results show a remar
able difference to Eqs.~3.19!–~3.23!. For the case (d,t)
5(3,3) one has

w̃~q→0!5w̃~0!1
1

2
w̃9~0!q22

p2

12
Aq31w̃4q41w̃5q5

1O~q6!, t53. ~3.49!

The first two terms are given by Eq.~3.47! whereas similar
explicit formulas forw̃4 and w̃5 are not available. Inserting
Eq. ~3.49! into Eq. ~3.41! leads, in contrast to Eq.~3.22!, to
the form

s0~q→0!5s01h0
(0)q1k0q21h0

(1)q31O~q4!, t53,
~3.50!

of s0(q→0) with the following explicit expressions for th
corresponding coefficients as obtained within the product
proximation:

h0
(0)52

p2

6
A

s0

w̃9~0!
,0, ~3.51!

k05k2k0
(H)2k0

(HH)12
s0

w̃9~0!
w̃4 , ~3.52!

and

h0
(1)52

s0

w̃9~0!
w̃51

p2

6
A

k0
(H)

w̃9~0!
~3.53!

@see Eqs.~3.41!–~3.45!, ~3.47!, and~3.49!#. Thus the product
approximation yields a stronger singularity ofs0(q→0)
@;q, Eq. ~3.50!# than the full theory@;q2 ln q, Eq. ~3.22!#.
As discussed below the full result fors0(q) exhibits a linear
behavior;q for q→0 which ultimately crosses over to th
behavior;q2 ln q. For increasing values ofj, for which the
quality of the product approximation improves, this cros
over to the behavior;q2 ln q occurs for smaller values ofq.
In this sense the product approximation is a valuable
proximation although it misses the ultimate singular behav
;q2 ln q for q→0.
i-

p-

-

-
r

The most important feature of the above results is that
the generic case of fluids governed by dispersion forces
caying ;r 26 the coefficienth0

(0) is always negative. Re-
markably, to a large extent the value ofh0

(0) depends only on

the amplitudeA of this asymptotic decay becauses0 /w̃9(0)
is independent ofw̃9(0) @Eq. ~3.42!#. The actual form of
w(r ), besides its asymptotic behavior forr→`, enters only
indirectly via Dr, j, and r̄0(x). The negative value ofh0

(0)

implies that within the product approximations0(q) attains
linearly a local maximum atq50, exhibits a minimum at
qmin.0, and crosses over to the increase described by
~3.14!. In contrast toh0

(0) the signs ofk0 and l0
(1) are not

fixed so that it depends on the specific system whether
terms;q2 and ;q3 or only even higher ones accomplis
the formation of the minimum ofs0(q). As mentioned after
Eq. ~3.53!, for values2qr0 ln qr0,r0 /j the product approxi-
mation@Eq. ~3.50!# is no longer valid and there is a crossov
to the ultimate asymptotic behaviorq→0 as given by Eq.
~3.22!.

For the interaction potential in Eq.~2.2! one hasA

5w0r 0
6 and w̃(q)5w̃(0)(11qr0)e2qr0 with w̃(0)52w(0)

52p2r 0
3w0/4,0, w̃9(0)52w̃(0)r 0

2.0, w̃45w̃(0)r 0
4/8

,0, w̃55w̃(0)r 0
5/30,0, and*d3r r 2w(r )523w̃9(0). The

signs of k0 and h0
(1) depend on the shape of the profile

r̄0(x) and r̄H(x), the amplitudeCH , and temperature:

k052w̃~0!~Dr!2
r 0

4

j FCH
2 I kS j

r 0
D 4

2
1

2
CHS j

r 0
D 2

I H2
1

32
I 0G ,

~3.54!

with the dimensionless integral

I k52
1

w̃~0!
E

2`

`

dxS w̃~0!1
]2f h~r!

]r2 U
r0(xj)

D @ r̄H~x!#2.0.

~3.55!

For the form of the profiler̄H(x) as given by Eq.~3.31! and
by using Eqs.~2.1! and~2.3! it turns out numerically that for
temperatures above the triple pointTtr.(2/3)Tc the integral
in Eq. ~3.55! can be approximated by

I k5
1

2 S r 0

j D 2

I HH , ~3.56!

which amounts to replacing in the factorw̃(0)
1@]2f h(r)/]r2#5j22(T,r)w̃9(0)/2 entering the integrand
in Eq. ~3.55! the actual correlation length by its aprroxima
form j(T,r).a(T)t21/2 with the amplitudea(T)5j0

2T/Tc

which depends onT but not onr @see Eq.~3.29!#. The error
of the approximation is less than 20% and is well within t
upper and lower bounds which one obtains by using the c
relation length in the liquid and vapor phases, respectiv
in the formula~3.56!. Thus, we regard the numerical error
this approximation to be smaller than the uncertainty indu
by the definition of the profilerH(u/j) itself.

Using the same kind of reasoning leading to the expr
sion in Eq. ~3.56! one finds, for the bending rigidity@Eq.
~3.45!#,
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k5k0
(HH)S 11

1

2

r 0
2

j2D ~3.57!

@see Eq.~3.44!#.
From Eqs.~3.54!–~3.56! and from the values forI H ,I 0,

andI HH given below Eq.~3.40! as well as from Eq.~3.29! it
follows that the coefficientk0 in Eq. ~3.54! is negative for all
temperatures ifCH,CH* 51/(12I HH).1.35. For CH.CH*
the coefficientk0 is negative for temperatures between t
triple point Ttr.

2
3 Tc and a temperatureT* (CH) and k0 is

positive within the temperature rangeT* (CH),T,Tc . ~For
the model fluid considered here the critical point is giv
within the present density functional theory bykBTc

.0.09w(0)r 0
23.0.22w0 and rcr 0

350.249.) The coefficient
k0 changes sign at

T*

Tc
5

1

CH2CH
2 /CH*

~12A122CH12CH
2 /CH* !,

CH.CH* .1.35. ~3.58!

This result demonstrates that independent model calculat
for the hitherto unknown amplitudeCH would be highly wel-
come because its actual value has significant repercuss
on the behavior ofs(q).

Within our model the coefficienth0
(1) @Eq. ~3.53!# reduces

to

h0
(1)5

p2

12
w0r 0

8 ~Dr!2

j FCHI HS j

r 0
D 2

2
1

40
I 0G . ~3.59!

Equation~3.59! implies that forCH. 4
15 the coefficienth0

(1)

is positive forTtr,T,Tc . ForCH, 4
15 the coefficienth0

(1) is
positive within the temperature range (12 5

4 CH)Tc,T,Tc
but negative forTtr,T,(12 5

4 CH)Tc . From this analysis
we infer that typically the formation of the minimum o
s0(q), i.e., the increase ofs0(q), for large q is accom-
plished by the term;q2 @see Eq.~3.50!# and providedCH is
sufficiently large and the temperature sufficiently high.

Finally, for the interaction potential discussed above@Eq.
~2.2!# we quote the full expression fors0(q) as obtained
from the product approximation given by Eq.~3.41!:

s0~q!

s0
5F22CHS j

r 0
D 2

y2G12~11y!e2y

y2

10.74CH
2 S j

r 0
D 2

y2F1

2
1S j

r 0
D 2

@12~11y!e2y#G
1O~y4!512

2

3
y1

1

2 F ~0.74CH
2 2CH!S j

r 0
D 2

2
1

2Gy21
1

3 FCHS j

r 0
D 2

2
1

5Gy31O~y4!, y5qr0 .

~3.60!

This result can be written in terms of the variablez5qj so
that
ns

ns

s0~q!

s0
511

1

2
~0.74CH

2 2CH!z21
0.74

2
CH

2 z4

2S 2

3
z2

1

3
CHz31

0.74

3
CH

2 z5D r 0

j
1OS S r 0

j D 2D .

~3.61!

In the limit j→` the contributions;r 0 /j andO„(r 0 /j)2
…

vanish ands0(q)/s0 reduces to a function ofz only, i.e.,
11 1

2 (0.74CH
2 2CH)z21O(z4) which increases~decreases!

as function ofz for CH.1.35(CH,1.35). The ultimate in-
crease for large values ofz in the caseCH,1.35 is accom-
plished by termsO(z4) not captured by the present expa
sion. Although we neglect contributionsO(z4) in Eq. ~3.61!,
we keep all terms;z4 resulting from the expansion of th
terms given explicitly in the first part of Eq.~3.60! in order
to maintain the qualitative functional form ofs0(q), in par-
ticular, the increase forz@1, even if 0.74CH,1. We note
that in the limitr 0 /j→0 s0(q) turns into ananalytic limit-
ing function ofz5qj. This is not only true within the prod-
uct expansion@Eq. ~3.61!# but also for the full theory, be-
cause the latter reduces to the product approximation in
limit r 0 /j→0.

We emphasize that, inspite of the fact that within t
product approximation forr 0 /j finite s0(q→0) does not
exhibit the correct singular behaviorq2 ln q, Eqs.~3.60! and
~3.61! represent useful analytic expressions which provid
good overall account of the behavior ofs0(q).

E. Numerical analysis and temperature dependence

The explicit results given above allow one to obtain
transparent view of the overall behavior ofs0(q), of its
parametric dependence on various features of the intri
profile, and of its temperature dependence. This advantag
based on the product approximation described in Eq.~3.32!.
By carrying out a full numerical analysis for the model co
sidered above we are able to assess the reliability of
approximation. To this end we compare Eq.~3.12! with Eq.
~3.42! and Eq.~3.25! with Eq. ~3.54!. We find that the full
numerical results agree with the product approximation
within 10% as long asj.r 0, i.e., for T.0.83Tc @see Eq.
~3.29!# which is slightly above the triple pointTtr.0.67Tc .

In Fig. 3 we compare the full form ofs0(q) as described
by Eq. ~3.11! with its approximate form given by Eq.~3.41!
for two limiting cases:r 0 /j51 ~i.e.,T.0.83Tc) close to the
triple point andr 0 /j50.1 ~i.e., t52.5•1023) close toTc .
We find that in both cases the qualitative functional form
s0(q) is captured well by the product approximation. In pa
ticular, the positionqmin of the minimum and the increase o
s0(q) for qr0>2 are in good agreement with the numeric
evaluation of the full form, although the product approxim
tion overestimates the depth of the minimum. This overe
mation is linked to the fact that the product approximati
yields a behaviors0(q→0)2s05h0

(0)q,h0
(0),0, instead of

the actual behaviors0(q→0)2s05l̄0
(0)q2 ln q, l̄0

(0).0,
which leads to a less pronounced decrease ofs0(q) and is
the same kind of singularity atq50 as predicted by the
sharp-kink approximation@14#.
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FIG. 3. ~a! Normalized momentum-dependent surface tensions0(q)/s0(0) as given by Eq.~3.11! ~solid curves! and its product
approximation~dashed curves! given by Eq.~3.41! for r 0 /j51 close to the triple point and forr 0 /j50.1 close to the critical point. The dat
correspond to the model defined by Eqs.~2.1!–~2.3! wherer 0 denotes the diameter of the fluid particles andj the bulk correlation length@see
Eq. ~3.29!#. The interface profilesr0(u) andrH(u) are given by Eqs.~3.26!, ~3.27!, ~3.30!, and~3.31! with CH50.5. The numerical results
for the full theory are in accordance with the behavior ofs0(q→0) as given by Eq.~3.22! and ofs0(q→`) as given by Eq.~3.14!. For

q→0 to leading orders(q) decreases asl̄0
(0)q2 ln q whereas the product approximation predicts a decrease ash0

(0)q. However, forqj
sufficiently large the actual decrease;q2 ln q crosses over to the linear decrease;q ~see the data forr 0 /j51). As expected, in the limit
r 0 /j→0 the full expression fors0(q) reduces to the one predicted by the product approximation, which in this limit turns into ananalytic
limiting function of z5qj @see Eq.~3.61!#. Accordingly the termh0

(0)q5(h0
(0)/j)z vanishes in the limitj→`. The opposite limitr 0 /j

→` corresponds to the sharp-kink approximation which leads to the singularityq2 ln q. For any finite value ofr 0 /j the full expression for
s0(q) has the same leading singularity as predicted by the sharp-kink approximation. Whereas the full expression fors0(q) contains the
sharp-kink approximation as a limiting case, the product approximation cannot capture this case because it is constructed to c
opposite case. Both the full theory and the product approximation render a minimum ofs0(q) whose temperature dependence is shown
Fig. 4 as a function ofr 0/j. ~b! Normalized momentum-dependent surface tensions0(q)/s0(0) for r 0 /j51 andCH50, 0.3, and 0.5 as
function of qr0 within the full theory ~solid lines! and the product approximation~dashed lines!. For increasing amplitudesCH of the
distortionrH(u) of the density profile due to its curvature the location of the minimum is shifted towards smaller values ofq and becomes
more shallow. For finite values ofCH the behavior ofs0(q) at smallq is numerically dominated by the quadratic curvature contribut
k0q2 @see Eqs.~3.22! and~3.50!#; for CH,1.35 the coefficient is always negative. On this scale the leading singular behavior;q2 ln(qr0)
becomes visible only forCH50 ~inset!. The inset shows the behavior of the full expression fors0(q) for r 0 /j50 ~dotted line!, r 0 /j
50.02~dash-dotted line!, r 0 /j50.1 ~solid line!, andr 0 /j51 ~dash-double-dotted line!. For 2qr0 ln(qr0).r0 /j one can clearly see a linea
decrease ofs0(q) as predicted by the product approximation whereas for2qr0 ln(qr0),r0 /j there is a crossover to the singulari
;q2 ln(qr0) of the full theory.
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Figure 3~a! corresponds to a fixed amplitudeCH50.5 of
the profilerH(u). For smaller values ofCH the minimum is
deeper and located at larger values ofqmin @Fig. 3~b!#. Figure
3~a! demonstrates that in the limitr 0 /j→0, s0(q) reduces
to an analytic limiting function of z5qj, which is propor-
tional to z2 for small z with a negative coefficient forCH
,1.35@see Eq.~3.61!#. In the limit r 0 /j→0 the full expres-
sion for s0(q) reduces to the one obtained within the pro
uct approximation. On the other hand, as function ofqr0 the
inset of Fig. 3~b! shows the crossover from the linear m
mentum dependence, as predicted by the product approx
tion, to the asymptotic behaviorq2 ln qr0 for q→0. For
r 0 /j50 the linear decrease ofs0(q) is valid for all values
of q whereas forr 0 /j.0 it can be observed only for
2qr0 ln qr0.r0 /j.

From Fig. 3 one infers thats0(q) is a nonmonotonic
function forming a minimum atqmin . Figure 4 shows the
temperature dependence of the position and of the dept
this minimum in terms of the inverse correlation leng
within the physically accessible temperature range betw
the triple point atTtr.

2
3 Tc ~i.e., r 0 /j.1.73) andTc ~i.e.,

r 0 /j50). The data~solid line! correspond to the full theory
-

a-

of

n

for the model studied in Fig. 3. Within the product approx
mation ~dashed line! upon approachingTc the minimum of
s0(q) disappears by shifting its position towardsq50 ac-
cording to

qmin;
1

ja ;ta/2, t512
T

Tc
→0, ~3.62!

and by becoming more shallow, i.e.,

12s0~qmin!/s0;ta21. ~3.63!

The exponent is given bya51 with 12s0(qmin)/s05O(1)
for CH,CH* 51.35 and a52 for CH.CH* This disap-
pearence of the minimum ins0(q) for T→Tc is in accor-
dance with the expectation that nearTc not only the bulk
properties but also the interfacial properties can be descr
by a local theory ~i.e., based on the Landau-Ginzbur
Wilson Hamiltonian! which does not provide a nonmono
tonic behavior ofs0(q).

The product approximation describes the location and
depth of the minimum remarkably well forCH,CH* . How-
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ever, for instance, forCH52 within the full theory there is a
crossover to an exponential vanishing of the position and
the depth of the minimum,

qmin;e2cj, 12s0~qmin!/s0;e2 c̄j, ~3.64!

in accordance to the asymptotic behavior ofs0(q) given by
Eq. ~3.22!.

FIG. 4. Temperature dependence of~a! the position,qmin , and
~b! the depth, 12s0(qmin)/s0(0), of the minimum ofs0(q) for the
same model as in Fig. 3@Eq. ~3.11!# with CH50.5 andCH52. The
full theory ~solid line! is described remarkably well by the produ
approximation~dashed line! for CH,CH* , whereas forCH52 the
asymptotic behavior;q2 ln q of s0(q) yields an exponential be
havior for the vanishing of these quantities instead of an algeb
one. Fort5(Tc2T)/Tc→0, i.e., j→`, the position of the mini-
mumqmin vanishes;j21 and the depth 12s0(qmin)/s0(0) reaches
a constant value forCH,CH* .1.35 whereas forCH.CH* both van-
ish exponentially as function ofj. The disappearence of the min
mum for t→0 is in accordance with the expectation that upon
proachingTc the interfacial structures attain universal propert
which can be described by alocal theory within which the range o
the forces is zero on the scale of the correlation length so tha
phenomenological capillary-wave theory is applicable which d
not provide a nonmonotonic behavior ofs0(q). In ~a! and~b!, due
to T.Ttr , the physically accessible range forr 0 /j is given by
(r 0 /j)max5A3.1.73.
f

F. Comparision with other theories

It is instructive to compare the present theory with pre
ous efforts to determine the effective interface Hamiltonia
To this end we do not consider the full form ofH@ f # as
derived in Sec. II C but confine the discussion to the vario
corresponding Gaussian approximations.

In the so-called sharp-kink approximation the intrins
density profile is taken asr (sk)(u)5r l2DrQ(u) with the
Heaviside functionQ(u) so that]r0

(sk)(u)/]u52Drd(u)
~see Sec. II C! andrH(u)[0. In this special case the prese
theory reduces to the Hamiltonian given in Eq.~2.42! as
obtained in Ref.@14#:

H (sk)@ f ~R!#5
1

2
mGDrE

A
d2R@ f ~R!#2

2
1

2
~Dr!2E E

A
d2R d2R8E

0

`

dz

3E
0

f (R8)2 f (R)
dz8w~ ur 82r u!. ~3.65!

Within the Gaussian approximation this result leads to

s0
(sk)~q!5~Dr!2

w̃~q,0!2w̃~0,0!

q2
, ~3.66!

with s0
(sk)(q→`)50, and, for the model potential given b

Eq. ~2.2!, to

s0
(sk)~q→0!5s01

p

32
w0r 0

6~Dr!2Fq2 ln
qr0

2
2S 3

4
2CDq2G ,

~3.67!

whereC;0.5772 is Euler’s constant. The present theory a
its sharp-kink approximation have in common that for flui
governed by dispersion forces they predict a maximum
s0(q) at q50 which is attained via the singular momentu
dependence;q2 ln(qr0). However, the sharp-kink approxi
mation yields a monotonic decrease ofs0(q) and thus fails
to predict the increase ofs0(q) for large q and thus the
formation of a minimum atqmin.0. Therefore we conclude
that the smooth variation of the intrinsic density profile a
its distortion due to the capillary waves are responsible
the formation of a nontrivial minimum.

The present theory differs qualitatively from the classic
capillary wave theory which in its simplest and most co
monly used version corresponds to a square-gradient the
i.e., H5 1

2 s0*d2R@¹ f (R)#2, so thats0(q) is constant. A
more sophisticated but phenomenological ansatz follo
from expanding the Fourier transformed Helfrich Ham
tonian into powers ofq @12,13#, leading to s0(q)5s0
1kq21O(q4) with k.0 @23#. If one assigns the prope
values ofs0 and k as obtained by the present theory, th
phenomenological capillary-wave theory agrees with
present theory for largeq, i.e., q@j. However, this ansatz
fails to capture the formation of the minimum ofs0(q) at
qmin.0 as well as the singularity;q2 ln(qr0) of s0(q) at
q50. Therefore, as shown in Fig. 5, the Helfrich Ham
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tonian turns out to be qualitatively incorrect for describi
the long-wavelength limit of capillary waves on fluid inte
faces.

In principles(q) can be inferred from the structure fact
of a liquid-vapor interface~see below! as obtained from
simulations. However, the accuracy of such data as prese
available @24# does not allow one to extract a discernib
deviation of the surface tensions(q) from its values0 at
q50.

IV. PREDICTIONS FOR SCATTERING EXPERIMENTS

The momentum-dependent surface tensions0(q) is ex-
perimentally accessible by x-ray or neutron scattering
grazing incidence which probe the two-point correlati
function @25#

^ f̃ ~q! f̃ ~q8!&5G~q!~2p!2d~q1q8!, ~4.1!

whereq is the lateral momentum transfer. Within the Gau
ian approximation one has

G0~q!5
kBT

DrmG~122dHq2!1s0~q!q2 . ~4.2!

This means that the analysis of thediffusescattering intensity
around the specular beam of x rays or neutrons, which
totally reflected at the liquid-vapor interface, allows one
retrieve the full functional form ofs(q) whose Gaussian
approximation is given bys0(q) @Eq. ~3.11! and Figs. 3–5#.
@However, one should keep in mind that this diffuse scat
ing intensity in addition contains contributions which ste

FIG. 5. Comparision of the present theory fors0(q) @Eq. ~3.11!,
solid curve as shown already in Fig. 3# with the predictions of the
simple square-gradient theoryH5

1
2 s0*d2R@¹ f (R)#2 ~dotted

curve!, the phenomenological capillary-wave theory@23# corre-
sponding to s0(q)/s0511(k/s0)q2 ~dashed curve!, and the
sharp-kink approximation@14# of the present theory~dash-dotted
curve!. The parameters are the same as in Fig. 3, i.e.,CH50.5 and
r 0 /j51. The phenomenological capillary-wave theory does
yield a specific value fork/s0. Here it is chosen such that this rat
has the same value as the one predicted by the present theo
large q. Only the present theory predicts the formation of a mi
mum of s0(q).
tly

t

-

re

r-

for the fluctuating semi-infinite liquid phase bounded by
planar, nonfluctuating liquid-vapor interface. These contrib
tions must be separated off in order to obtainG0(q) in Eq.
~4.2!#. The non-Gaussian contributions tos(q) give rise to a
temperature dependence, which goes beyond that induce
the temperature dependences of the intrinsic density pro
r0(u) andrH(u) and of the direct correlation function, to
more complicated dependence on the gravity constantG and
to a modification of the momentum dependence. Prelim
results indicate that the central results presented above
s0(q) in systems with long-ranged forces remain valid f
s(q) @26#, in particular the singularity ofs(q) at q50, as
well as the presence of a local maximum atq50 and of a
global minimum atqmin.0.

From Eqs.~2.27!, ~2.28!, and ~3.27! and due to the nor-
malization*2`

` dxr̄H(x)51 one finds

dH5CHj2. ~4.3!

Thus from studying the momentum dependence of the g
ity term in Eq.~4.2!, which can be varied independently, e.g
by changing the isotopic composition of the fluid, one c
infer the amplitudeCH directly and independently. This i
very useful because at present there is no reliable theore
value forCH available, but this value enters sensitively in
the expression fors0(q) at various places. In particular, th
comparision with the largeq behaviors(q→`)5kq2 @Eq.
~3.45!# can provide an interesting consistency check.

In recent experiments thelateral surface correlations o
an oil-water interface@27# and of the liquid-vapor interface
of ethanol@28# and water@29,30# were studied using x-rays
under grazing incidence@31#. So far these experiments hav
been focused on the very vicinity of the specular beam pr
ing the leading qdependence forq→0 in Eq. ~4.2!. These
experiments demonstrated that this leading beha
;s0(0)q2 is in agreement with the expected roughening
the fluid interface in the limit of microgravity, i.e.,G→0.
Our present theory is in accordance with these findin
However, the main thrust of the present analysis predic
nontrivial behavior of thenext-to-leadingterm;q4lnq in the
denominator ofG0(q) @Eq. ~4.2!#. Its nonanalytic behavior
and its sign contain the fingerprints of the dispersion for
on the fluctuations at the fluid interface. Although the me
sured off-specular diffuse x-ray intensities of a bare wa
surface are not inconsistent with a constant surface ten
s0 @29,30#, the data for large values ofq are too noisy as to
allow one to analyze them in terms of a momentu
dependent surface tension. Nonetheless, there are first
that at larger values ofq the scattered intensity is larger tha
the one corresponding to Eq.~4.2! for a constants0 @30#.
This observation means thats0(q) decreases as a function o
q, in accordance with the present theory.

Recently, by using small-angle neutron scattering in
bulk the expected nonanalyticq3 momentum dependence i
the static structure function of simple liquids as induced
dispersion forces has been confirmed experimentally for
@32#~a!, Kr @32#~b!, and Xe@32#~c!. The present theory pre
dicts its counterpart;q2 ln q at fluid interfaces. The bulk
experiments revealed@32# that the strength of the bulk sin
gularity ;q3 is determined by the sum of the long-rang
interaction given by the dipole-dipole dispersion energy p
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a triple-dipole contribution of the Axilrod-Teller type. Con
cerning the quantitative comparison between future exp
ments at interfaces with the present theory one should
prepared to include also three-body interactions not yet c
ered by Eq.~2.2!. The three-body interactions are expect
to influence the density dependence ofs0(q) but not its
temperature and momentum dependence@32#

Since it is a demanding experimental task to determ
s(q) from the diffuse scattering of x rays and neutrons
grazing incidence, it is worthwhile to note that with reduc
experimental efforts one is able to infer at least avera
informations abouts(q). Reflectivity (i 50) and ellipsom-
etry (i 51) experiments allow one to determine the mome
@23,28,33–38#

Fi
25E

0

qmax
dqq11 iG~q!. ~4.4!

Since s0(q→`) increases askq2 with k.0, one has
G0(q→`);q24 so that in Eq.~4.4! the momentum cutoff
qmax51/r 0 can be replaced by infinity without encountering
convergence problem even within the Gaussian approxi
tion. This improves the theoretical results of Ref.@14# which
are valid only for smallq and thus cannot capture the in
crease ofs0(q) for largeq. Although it is convenient to be
able to remove the cutoffqmax in Eq. ~4.4! and thus to get rid
of an additional fitting parameter, one has to keep in m
that on physical grounds the theoretical description of in
face fluctuations in terms of local height variables requi
the cutoff qmax conceptually. Therefore in analyzing suc
experiments one should test the importance of the contr
tion *qmax

` dq q11iG(q) for the interpretation of the data. Als

for this reason it would be very important to probeG(q)
directly as described by Eqs.~4.1! and ~4.2! because the
interpretation of the diffuse scattering intensity does not
quire a momentum cutoff. This would not only provide mu
more detailed information but it would also allow one
assess the importance of the aforementioned contribution
G(q) for large values ofq.

V. SUMMARY

We have obtained the following main results.
~1! Based on density functional theory for inhomogeneo

liquids we have derived an effective Hamiltonian for ga
liquid interfaces in simple fluids which takes into accou
both the presence of long-ranged dispersion forces in
fluid and the smooth variation of the intrinsic density profi
@Eq. ~2.11!#.

~2! In order to achieve an optimal implementation of t
d
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concept of the intrinsic density profile we have introduc
normal coordinates~Fig. 2!. Close to the interface position
the distortion of the planar intrinsic density profile due
curvature is taken into account@see Eq.~2.17!#.

~3! The approach described in~2! allows one to derive the
explicit functional dependence of the effective interfa
HamiltonianH@ f (R)# on the interface configurationf (R)
~Sec. II C!. H@ f (R)# consists of local functionals, due to th
gravity contribution and due to the curvature-induced dist
tion of the intrinsic density profile and of nonlocal function
als stemming from the nonzero range of the interaction
tential between the fluid particles@Eq. ~2.24!#.

~4! Within the Gaussian approximationH@ f (R)# can be
expressed in terms of a momentum-dependent surface
sions0(q) @Eqs.~3.10! and~3.11!# whose behavior is shown
in Fig. 3. Its salient features for fluids governed by disp
sion forces are a local maximum atq50 which is attained
linearly ;q followed, via a crossover, by a singularit
;q2 ln q, a global minimum atqmin.0, and an increase;q2

for largeq. The latter property is caused by the distortion
the intrinsic density profile due to curvatures@Eq. ~2.17!# and
renders an upper momentum cutoff in correlation functio
of f (R) effectively redundant. In systems governed by sho
ranged forcess0(q) is analytic and the global minimum ma
be shifted toq50. These results differ qualitatively from
those obtained from the phenomenological capillary wa
theory. This means that the Helfrich Hamiltonian is not a
plicable for describing fluid interfaces~Fig. 5!.

~5! The appearance of the minimum of the momentu
dependent surface tension is most pronounced near the t
point of the fluid. Upon approachingTc the depth of the
minimum vanishes;t12a, t5(Tc2T)/Tc→0, and the po-
sition of the minimum shifts towardsq50 proportional to
ta/2 where the exponenta51,2 depends on the amplitudeCH
@Eqs.~2.17! and~3.27!# of the distortion of the intrinsic den
sity profile due to curvatures~see Fig. 4!. NearTc as a func-
tion of qj, where j is the bulk correlation length
s0(q)/s0(0) reduces to an analytic limiting function@Eq.
~3.61! and Fig. 3~a!#.

~6! The momentum-dependent surface tension can
probed experimentally either directly through the diffu
scattering intensity around the specular beam of totally
flected x rays or neutrons@Eqs.~4.1! and~4.2!# or indirectly
via averaged moments obtained from reflectivity or ellipso
etry experiments@Eq. ~4.4!#.
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